semaphore提示您:看后求收藏(新笔趣阁www.xbqg5200.com),接着再看更方便。
至 2023 年 7 月底,国外已发布了 138 个大模型。我国大模型发展迅速,与国际前沿保持同步,百
度、腾讯、清华大学、北京航空航天大学等单位都推出了自己的大模型,截至 2023 年七月底,我
国已发布 130 个大模型。
2.2 知识抽取
知识抽取主要分为命名实体识别和关系抽取两方面。命名实体识别(NER)任务,旨在识别与
特定语义实体类型相关联的文本跨度。该任务最早于 1991 年由 Rau 等人提出。随着信息理解、人
工智能等领域的顶级会议对 NER 任务的评测,其定义逐渐细化和完善,并逐渐成为自然语言处理
(NLP)领域的重要组成部分。然而,不同领域对实体类型的定义存在差异,因此 NER 模型的构建
取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西
班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 NER 模型主要关注单词本身
的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇。
特征,同时引入其他表征信息来提升模型性能,如中文分词(CWS)、语义部分标签(POS)等外部
信息,因此构建中文命名实体识别(CNER)模型更为复杂