semaphore提示您:看后求收藏(新笔趣阁www.xbqg5200.com),接着再看更方便。
散的符号信息,如词或句子,映射到连续的向量空间中,以便计算机能够处理。向量化将高维数据转化为低维数据,保留了数据的关键特征又降低了数据的复杂度。选择pipecone存储向量数据,它支持查询,**,删除等一些列操作。选择weaviate作为向量搜索引擎,可以通过主题的分类检索,进行语义搜索、问答提取等等功能。第三部分是chatbot的构建。先前已经构建好了针对电力LCA领域的专业大模型,但是缺少检验模型的手段,即缺少模型优化环节,本项目设置通过Chatbot模式,通过与用户进行问答的形式,检验模型是否能调用电力行业LCA领域向量数据库回答该领域专业性问题和时效性问题的有效性。Chatbot是模拟人类对话的一种形式,就我们平时能使到的chatgpt就是以chatbot的形式来呈现的,而chatbot在这里的功能实现主要是为了体现检索功能,大致可分为知识库检索功能和在线搜索。那么就产生了三种检索模式。
仅基于大语言模型,连接知识库搜索,和在线搜索。前端部分我采用streamlit来完成,UI设计如图所示。这边是功能按钮,中间是对话框。先前有讲到了,我们来检测针对专业领域的大模型的标准就是检测是否有能力回答专业领域的问题,并针对结果进行优化。这里我向chatbot提出同一个问题。只采用大语言模型,采用知识库与大语言模型结合,和联网搜索与大语言模型结合。三种功能下获得的回答是完全不同的,后面两个检索功能均为大语言模型优化了生成回答的准